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Quantum field treatment of disoriented-chiral-condensate dynamics
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A practical quantum-field treatment is developed for systems endowed with an effective mass function
depending on both space and time and a schematic application illustrates the quantitative importance of
quantum fluctuations in the dynamics of disoriented chiral condensates.

PACS number~s!: 25.75.2q, 11.30.Rd
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I. INTRODUCTION

The prospect of observing manifestations of chiral sy
metry restoration in high-energy nuclear collisions h
stimulated significant research activity over the past sev
years@1#. In this endeavor, the most popular theoretical to
has been the linears model, which in its simplest form de
scribes an interacting O~4! field with isoscalar (s) and
isovector (p) components. Within this framework, a numb
of instructive dynamical simulations have been carried ou
the level of classical fields for the types of environment e
pected in high-energy collisions@2–6#. Furthermore,
quantum-field treatments have been developed and app
albeit within the mean-field approximation and for unifor
environments@7–9#.

Relative to the classical studies, these latter treatm
take account of the ever present quantum fluctuations an
appears that these may contribute significantly to the em
ing signals@9#. Therefore, it is of interest to further develo
the quantal treatment so that more refined scenarios ca
addressed dynamically. The present paper describes how
quantum-field treatment may be extended to nonuniform
vironments in a manner that allows numerical simulatio
for the types of scenario relevant to the study of disorien
chiral condensates. Moreover, the important role of quan
fluctuations is illustrated by means of a concrete applicat

The highly excited systems formed in high-energy nucl
collisions expand very fast and the environments cool do
correspondingly rapidly. As a consequence, the effec
pion mass decreases quite quickly from its initially high th
mal value towards its free value. Furthermore, the n
equilibrium relaxation dynamics of the chiral order para
eter gives rise to a fairly regular oscillatory modulation
the mass with a frequency near half the value employed
the s meson@5#. Since the expansion is predominantly lo
gitudinal, it appears@3,5# that the cooling rate is insufficien
to produce a quench@2#, in which the square of the pion
mass turns negative, causing the softest modes to bec
unstable and thus display an exponential population grow
While perhaps unfortunate from the physics perspective,
feature does simplify the physical analysis and improves
prospect for developing test-particle transport treatme
@10#. ~A concrete impression of the typical time evolution
the effective pion mass in the bulk of the rapidly expand
system can be gained from Fig. 1.!

A further complication encountered in nuclear collisio
experiments is the nonuniformity of the environment resu
ing from the finite extension of the systems formed. In t
mean-field framework, this causes the mass to be depen
0556-2813/2000/62~6!/064905~4!/$15.00 62 0649
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on position as well, which then couples the element
modes and thus complicates the treatment significantly.~A
typical spatial profile of the mass function expected
nuclear collisions is shown in Fig. 2.!

II. PROPAGATION

With such environments in mind, we now turn to the fo
mal developments. In the mean-field approximation,
Hamiltonian density operator is given by

Ĥ~x!5 1
2 @ p̂~x!21„¹q̂~x!…21m2~x,t !q̂~x!2#, ~1!

whereq̂(x) is the field operator andp̂(x) is its time deriva-
tive. Free pions provide a natural basis but, in order to br
the problem onto a canonical form, each pair of traveli
wavesu6k& is replaced by a corresponding pair of standi
wavesu6k& @9#. With an arbitrary sign convention for th
quantum numbersk56k, the associated canonical eige
functions are

^xuk&5
1

AV
3H A2 cos~k•x!, k.0,

1, k50,

2A2 sin~k•x!, k,0.

~2!

The canonical modes are orthonormal and comple
*dx^kux&^xuk8&5dkk8 , (k^xuk&^kux8&5d(x2x8). The ca-
nonical annihilation operator isâk , with @âk ,âk8

†
#5dkk8,

and the dispersion relation isvk
25k21m2.

FIG. 1. The time dependence of the bulk value of the effect
mass function used in the illustration,m0(t). It has a rough corre-
spondence with typical mass functions resulting from dynam
DCC studies with the linears model @5,6#.
©2000 The American Physical Society05-1



tio

s,

he

n

y

cor-

,

les,
ate

erg
o

ted

f

-
h is

n,
he
e
h

JO”RGEN RANDRUP PHYSICAL REVIEW C 62 064905
The field operators can then be expanded as follows:

q̂~x!5(
k

^xuk&q̂k5(
l

@Fl~x!âl1Fl~x!* âl
†#, ~3!

p̂~x!5(
k

^xuk& p̂k5(
l

@Gl~x!âl1Gl~x!* âl
†#. ~4!

The mode functions are governed by the usual field equa
of motion, which can readily be solved numerically,

Ḟl~x!5Gl~x!, Ġl~x!5@D2m2~x!#Fl~x!. ~5!

The appropriate initial conditions are

Fl~x,t i!5
1

A2vl

^xul&, Gl~x,t i!52 iAvl

2
^xul&.

~6!

Using the canonical representation of the mode function

Fl~x!5(
k

^xuk&Fk
l , Gl~x!5(

k
^xuk&Gk

l , ~7!

we thus obtain the evolution of the canonical operators,

q̂k~ t !5(
l

@Fk
l~ t !âl1Fk

l~ t !* âl
†#, ~8!

p̂k~ t !5(
l

Gk
l~ t !âl1Gk

l~ t !* âl
†]. ~9!

III. ANALYSIS

It is instructive to express the Hamiltonian in terms of t
canonical operatorsp̂k and q̂k ,

Ĥ~ t ![E dx Ĥ~x!5
1

2(k
p̂k

21 1
2 (

kk8
q̂k M kk8q̂k8 . ~10!

FIG. 2. The initial mass function used in the illustratio
m(x,t50). It is obtained by smearing a sharp distribution on t
interval uxu<5 fm with an exponential having a width of on
fermi. The mass excess is assumed to retain its spatial profile w
the overall magnitude scales as the bulk valuem0(t) given in Fig. 1.
06490
n

Since the mass matrix is real and symmetric,M kk8(t)
5^kum2(x,t)2Duk8&, it can be diagonalized at any give
time t by a real, unitary matrixS(t), leading to

Ĥ~ t !5
1

2(K @ P̂K
2 1VK

2 Q̂K
2 #. ~11!

Here the correlated canonical field operators are given b

Q̂K5(
k

q̂k SkK~ t !, P̂K5(
k

p̂k SkK~ t !, ~12!

and they satisfy@Q̂K ,P̂K8#5 idKK 8 . At the given timet, the
corresponding correlated eigenfunctions are

^xuK &5(
k

^xuk&SkK~ t !. ~13!

If the eigenvalues are positive,VK
2 .0, excitations relative to

the adiabatic vacuum state can be defined by means of
related quasiparticle annihilation operators,

ÂK5AVK

2
Q̂K1

i

A2VK

P̂K , ~14!

which satisfy@ÂK ,ÂK8
†

#5dKK 8 . The adiabatic vacuum state

u0̄&, is characterized by the absence of quasipartic
ÂKu0̄&50, and is generally a complicated many-body st
when expressed in terms of the free quanta.

It is important to recognize that Eq.~14! refers to the
Schrödinger representation. The corresponding Heisenb
operator,ÂK(t), can be obtained by replacing the Schr¨-
dinger operatorsq̂k and p̂k entering in Eq.~12! by the cor-
responding Heisenberg operators given in Eqs.~8! and ~9!,

ÂK~ t !5(
L

@U K
L ~ t !ÂL1V K

L ~ t !* ÂL
†#, ~15!

whereÂL is the quasiparticle annihilation operator associa
with the initial form of the mass functionm2(x,t i) . The Bo-
goliubov coefficientsU K

L (t) andV K
L (t) can be obtained from

the basic mode coefficientsF(t) andG(t) by a sequence o
elementary transformations.

Since the operatorsÂK(t) refer to the evolving eigenrep
resentation, they are less suitable for the analysis whic
better performed in thex andk representations,

Â~x,t !5(
L

@U L~x,t !ÂL1V L~x,t !* ÂL
†#, ~16!

Âk~ t !5(
L

@U k
L~x,t !ÂL1V k

L~x,t !* ÂL
†#. ~17!

ile
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The corresponding Bogoliubov coefficients are obtained
the appropriate additional transformations,

U L~x;t !5(
kK

^xuk&SkK~ t !U K
L ~ t !, ~18!

U k
L~ t !5(

kK
^kuk&SkK~ t !U K

L ~ t !. ~19!

With the above preparations, we are now able to der
expressions for any quasiparticle observable. Of partic
interest is the spatial correlation function,

r̄~x,x8;t ![^tuÂ†~x!Â~x8!ut&5^t iuÂ†~x,t !Â~x8,t !ut i&

5 r̄qu~x,x8;t !1 r̄cl~x,x8;t !. ~20!

Here the first term arises from the quantum fluctuations
the initial state and is given by

r̄qu~x,x8;t !5(
L

V L~x,t !V L~x8,t !* . ~21!

The second term is caused by the real agitations in the in
state~which are often referred to as the ‘‘classical’’ or ‘‘the
mal’’ field fluctuations!.

Analogously, we may consider the one-body density m
trix in the k representation,

r̄kk8~ t ![^tuÂk
†Âk8ut&5^t iuÂk

†~ t !Âk8~ t !ut i& ~22!

5 r̄kk8
qu

~ t !1 r̄kk8
cl

~ t !, ~23!

where the quantal contribution is

r̄kk8
qu

~ t !5(
L

V k
L~ t !V k8

L
~ t !* . ~24!

Expressions for observables reflecting two- or many-bo
correlations can also be derived but they become prog
sively more complicated. Moreover, the results of course
pend on what is being assumed regarding the correspon
correlations in the initial state.

IV. ILLUSTRATIVE APPLICATION

In order to demonstrate the practical applicability of t
described treatment, and at the same time illustrate the
portance of the quantum fluctuations, we consider a o
dimensional system having the most important features
pected in actual scenarios. In order to emulate the fi
transverse extension of systems generated in high-en
heavy-ion collisions, we assume that the initial mass funct
exceeds the free valuem within only a limited region,uxu
<5 fm. We furthermore assume thatm2(x)2m2 maintains
this spatial profile in the course of time, while the over
magnitude scales in proportion to its bulk value,m0(t). Fig.
1 shows the time dependence of this latter quantity, wh
Fig. 2 depicts the initial spatial profile of the mass functio
m(x,0).

Given the particular mass functionm(x,t), the mode
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functionsFl(x,t) andGl(x,t) are then determined numer
cally by solving the equation of motion~5! for each canoni-
cal mode l. Since the mass function remains positi
throughout~in fact it is never below the free massm), it is
possible to analyze the system in terms of the adiabatic q
siparticle modes at any time.

The contribution from the quantum fluctuations to t
spatial quasiparticle density at various times during the e
lution, is shown in Fig. 3 and the associated spectral dis
bution is shown in Fig. 4,

r̄qu~x,t !5 r̄qu~x,x;t !5(
L

uV L~x,t !u2, ~25!

r̄k
qu~ t !5 r̄kk

qu~ t !5(
L

uV k
L~ t !u2. ~26!

These quantities show what would result if there were
excitation at all in the initial state~corresponding to zero

FIG. 3. The spatial quasiparticle density at successive timest ~as
indicated!, starting att50 from the correlated vacuum associat
with the mass function shown in Fig. 2.

FIG. 4. The spectral distribution of the quasiparticles at succ
sive times~indicated in fm/c) starting att50 from the vacuum
associated with the mass function shown in Fig. 2.
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temperature!. Any actual agitations in the initial state woul
then lead to additional contributions.

At the initial time, t5t i , the quantitiesr̄qu(x) and r̄k
qu

vanish by design. But soon, as the effective mass experie
its first rapid decrease, energy stored in the high initial m
is liberated and a rapidly rising quasiparticle density appe
with a spatial profile resembling that of the mass exc
dm(x)5m(x)2m. Part of these quasiparticles are rea
sorbed when the mass again increases and this cycle i
peated in a less noticeable manner, as the mass oscilla
proceed with an ever decreasing amplitude. The quasip
cles produced by this mechanism have a rather structure
spectrum of approximately Gaussian form.

Meanwhile, the regularity of the temporal oscillations
the mass function begins to manifest itself and, at somew
later times, the spectral profile exhibits a visible enhan
ment of the modes near the resonance frequency,v res
' 1

2 vs5300 MeV, corresponding to a momentum ofkres
'266 MeV/c. As a consequence, the quasiparticle gas
gins to resemble two countermoving beams with the co
sponding flow velocities centered aroundvflow'6kres/m.
The two corresponding outwards bursts are clearly visible
Fig. 3 at late times when the mass function has largely
laxed to its free form and the production processes have
sided.

Traces of these characteristic effects might be observ
in actual collision experiments, such as those underwa
RHIC. More extensive calculations would clearly be need
for a quantitative assessment of this prospect.

V. DISCUSSION

In the present paper we have sketched how the non
form and rapidly evolving scenarios of interest in connect
with disoriented chiral condensates may be addressed
real-time nonequilibrium quantum-field theory within th
mean-field approximation, in which the interactions are
coded into an effective mass function. For an arbitrary fo
of the mass function, the strategy is to first obtain the ti
evolution operator, which depends only onm2(x,t), and then
evaluate the observables resulting from any particular in
quantum stateut i&. This makes it economical to perform av
n
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erages over ensembles of initial states having similar m
functions.

When the eigenvalues of the mass matrix are posit
VK

2 .0, it is particularly instructive to consider quasipartic
excitations defined relative to the adiabatic eigenbasis. B
should be noted that even if the system enters the classic
forbidden region where the quasiparticles cannot be defin
the dynamical propagation of the system works witho
modification.

A first application of the developed treatment has be
made to a system with a nontrivial mass function depend
on both time and space. In addition to demonstrating
practicality of the approach, the example serves to illustr
the quantitative importance of including the quantum flu
tuations in the dynamical treatment.

The approach assumes that the effective mass functio
given. For the time being, an approximate form of the m
function for a given scenario can be obtained on the basi
semiclassical simulations@6#. Though not fully satisfactory,
this approach may actually be reasonably accurate, since
quantum treatment, while having a large effect on spec
signals, is expected to have a relatively small overall eff
on the effective mass. Nevertheless, an interesting and m
formal task, beyond scope of present study, is posed by
question of how to best determine the effective mass fu
tion selfconsistently with the evolution of the quantu
many-body state.

As noted above, the computational challenge posed by
treatment is not prohibitively larger than that met at the cl
sical level, since it merely requires~repeated! solution of the
same field equation~5!. The treatment may thus be applied
scenarios similar to those addressed at the classical le
This presents an obvious practical task which should yi
more quantitative information on the observable signals
the expected chiral dynamics.
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